Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus.
نویسندگان
چکیده
Xanthine dehydrogenase (XDH), a complex molybdo/iron-sulfur/flavoprotein, catalyzes the oxidation of hypoxanthine to xanthine followed by oxidation of xanthine to uric acid with concomitant reduction of NAD+. The 2.7 A resolution structure of Rhodobacter capsulatus XDH reveals that the bacterial and bovine XDH have highly similar folds despite differences in subunit composition. The NAD+ binding pocket of the bacterial XDH resembles that of the dehydrogenase form of the bovine enzyme rather than that of the oxidase form, which reduces O(2) instead of NAD+. The drug allopurinol is used to treat XDH-catalyzed uric acid build-up occurring in gout or during cancer chemotherapy. As a hypoxanthine analog, it is oxidized to alloxanthine, which cannot be further oxidized but acts as a tight binding inhibitor of XDH. The 3.0 A resolution structure of the XDH-alloxanthine complex shows direct coordination of alloxanthine to the molybdenum via a nitrogen atom. These results provide a starting point for the rational design of new XDH inhibitors.
منابع مشابه
Recombinant Rhodobacter capsulatus xanthine dehydrogenase, a useful model system for the characterization of protein variants leading to xanthinuria I in humans.
Rhodobacter capsulatus xanthine dehydrogenase (XDH) forms an (alphabeta)2 heterotetramer and is highly homologous to homodimeric eukaryotic XDHs. The crystal structures of bovine XDH and R. capsulatus XDH showed that the two proteins have highly similar folds. We have developed an efficient system for the recombinant expression of R. capsulatus XDH in Escherichia coli. The recombinant protein s...
متن کاملThe molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor.
The requirement of MobA for molybdoenzymes with different molybdenum cofactors was analyzed in Rhodobacter capsulatus. MobA is essential for DMSO reductase and nitrate reductase activity, both enzymes containing the molybdopterin guanine dinucleotide cofactor (MGD), but not for active xanthine dehydrogenase, harboring the molybdopterin cofactor. In contrast to the mob locus of Escherichia coli ...
متن کاملActivity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis.
During the screening for Rhodobacter capsulatus mutants defective in xanthine degradation, one Tn5 mutant which was able to grow with xanthine as a sole nitrogen source only in the presence of high molybdate concentrations (1 mM), a phenotype resembling Escherichia coli mogA mutants, was identified. Unexpectedly, the corresponding Tn5 insertion was located within the moeA gene. Partial DNA sequ...
متن کاملDietary Effect of Selenium-enriched Radish Sprouts, Vitamin E, and Rhodobacter capsulatus on Hypocholesterolemia and Immunity of Broiler
The study was designed to investigate the effects of dietary Selenium-enriched radish sprouts (Se-RS), Vitamin E (Vit E), and Rhodobacter capsulatus (RC) on immunity, cholesterol concentration, and fatty acid composition in broiler meat. A total of 100 two-week-old male broiler chicks were randomly assigned into five dietary groups: I) Control; II) Se-RS (5 μg/kg Se-RS); III) Se-RS+RC (5 μg/kg ...
متن کاملStructure and Protein–Protein Interactions of Methanol Dehydrogenase from Methylococcus capsulatus (Bath)
In the initial steps of their metabolic pathway, methanotrophic bacteria oxidize methane to methanol with methane monooxygenases (MMOs) and methanol to formaldehyde with methanol dehydrogenases (MDHs). Several lines of evidence suggest that the membrane-bound or particulate MMO (pMMO) and MDH interact to form a metabolic supercomplex. To further investigate the possible existence of such a supe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Structure
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2002